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Abstract

The transient response of large embedded foundation elements of length-to-diameter aspect ratio D/B ¼ 2–6 is characterized by a

complex stress distribution at the pier–soil interface that cannot be adequately represented by means of existing models for shallow

foundations or flexible piles. On the other hand, while three-dimensional (3D) numerical solutions are feasible, they are infrequently

employed in practice due to their associated cost and effort. Prompted by the scarcity of simplified models for design in current practice,

we here develop an analytical model that accounts for the multitude of soil resistance mechanisms mobilized at their base and

circumference, while retaining the advantages of simplified methodologies for the design of non-critical facilities. The characteristics of

soil resistance mechanisms and corresponding complex spring functions are developed on the basis of finite element simulations, by

equating the stiffness matrix terms and/or overall numerically computed response to the analytical expressions derived by means of the

proposed Winkler model. Sensitivity analyses are performed for the optimization of the truncated numerical domain size, the optimal

finite element size and the far-field dynamic boundary conditions to avoid spurious wave reflections. Numerical simulations of the

transient system response to vertically propagating shear waves are next successfully compared to the analytically predicted response.

Finally, the applicability of the method is assessed for soil profiles with depth-varying properties. The formulation of frequency-

dependent complex spring functions including material damping is also described, while extension of the methodology to account for

nonlinear soil behavior and soil–foundation interface separation is described in the conclusion and is being currently investigated.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: Soil–structure interaction; Winkler model; Kinematic interaction; Caissons; Embedded foundations; Finite elements
1. Introduction

Drilled shafts or pier foundations are large foundation
blocks of intermediate length-to-diameter aspect ratio
(typically within the range D/B ¼ 2–6), whose diameter
ranges from 2 to 12 ft [1]. Prefabricated and sunk in place,
or cast in situ, large diameter caisson foundations are
typically used as bridge foundation elements, deep-water
wharves, and overpasses. Examples include the Rokko
Island Bridge in Kobe, Japan, shown in Fig. 1a, and the
Brooklyn Bridge in New York, NY. Small-diameter
caissons on the other hand are extensively encountered
either as single foundation components of transmission
e front matter r 2008 Elsevier Ltd. All rights reserved.
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towers and heliostats, or in groups as part of the
foundation system of high rise buildings, multi-storey
parking decks and scour vulnerable structures [1].
Caissons are highly versatile in constructability for a

wide variety of soil formations, and can be installed in
virtually any soil type including residual soils, karstic
formations, soft soils and marine sites. Even further, since
no dewatering is necessary during construction, caissons
are particularly advantageous at soft sites or sites where
excessive groundwater is considered to be critical for the
selection of the excavation and support method. The high
capacity of single caisson elements in axial as well as lateral
loading, and the ability to connect directly to structural
members without caps enables them to effectively replace
pile groups, and makes them a popular choice for
structures anticipated to be subjected to significant lateral
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Fig. 1. (Top) Photo of the foundation system of the Rokko Island Bridge in Kobe, Japan, a double-deck loose arch bridge of length 217m, constructed in

1992; (middle) schematic illustration of the Rokko Island Bridge geometry indicating the location of caisson foundation elements at the piers adjacent to

the bridge abutments (not to scale); (bottom) foundation categorization as a function of the geometry characteristics.
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loads. They are thus used worldwide by agencies that
focus on the design and construction of lifelines in a wide
variety of site conditions, such as the Departments of
Transportation.

Categorized according to their geometry characteristics
as intermediate embedded foundations (namely of length-
to-diameter ratio 2oD/Bo6) when compared to shallow
embedded footings (D/Bo2) or piles (D/B46) (Fig. 1c),
caisson foundations are currently designed by means of one
of the following two alternative methodologies: (i) existing
shallow embedded foundation methods; typical examples
include the analytical, semi-analytical, and numerical
approaches by Novak and Beredugo [2], Kausel and
Roesset [3], Elsabee and Morray [4], Dominguez [5],
Tassoulas [6], Mita and Luco [7], Tajirian and Tabatabaie
[8], Gazetas [9], and Gazetas and co-workers [10–12], the
majority of which have been developed for cylindrical
foundations (note that the latter may be applied to
foundation elements of arbitrary cross-sections); or (ii)
flexible pile approaches (also referred to as p–y and t–z

curves) developed semi-empirically as a function of soil
type, e.g., Lam and Chaudhury [13]. Alternatively, while
three-dimensional (3D) numerical solutions are feasible,
their application for the design of non-critical facilities is
typically prohibited by the associated site investigation
cost, computational time, and user expertise required.
The comparable dimensions of depth to diameter of

caisson foundations imply that within the context of
assessing the global foundation stiffness, neither the
circumference nor the base resistance mechanisms may be
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Fig. 2. Geometry and decomposition of a soil–structure interaction

problem: (a) soil–foundation–structure interaction system, (b) kinematic

interaction, and (c) inertial interaction (modified from Ref. [14]).
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neglected. On the other hand, however, pier foundations
typically extend through layered soil formations, a fact that
requires analytical solutions to be capable of capturing
the vertical variability in soil stiffness when simulating the
overall stiffness of the soil–foundation system. While the
first condition resembles the approach followed within
the context of shallow foundation theories, the latter
renders p–y curve approaches to be more suitable when
accounting for layered media. Results presented in this
paper show that caisson foundations are indeed expected
to behave as rigid elements similar to shallow foundations
for maximum depth to diameter ratios of 6 and typical
soil–caisson impedance contrasts, while beyond that
range of aspect ratios, their response begins to approach
that of flexible piles. Nonetheless, the embedded founda-
tion solutions are shown to be applicable only for low
embedment ratios (D/Bo2).

For pier foundations with intermediate length (D/B ¼
2–6), the soil–structure interaction effects comprising the
load-transfer mechanisms from the superstructure to the
surrounding soil and the potential altering of loads
transferred through the foundation from the soil to the
structural elements (e.g., during seismic motion) are
associated with a complex stress distribution at the
pier–soil interface with comparable contributions from
the base and the shaft that cannot be captured by simplified
shallow or deep foundation approaches.

Prompted by the scarcity of simplified design methodol-
ogies for caisson foundations that may be used to
adequately predict their dynamic response at intermediate
levels of target design sophistication, we here develop a
dynamic Winkler model that properly accounts for the
multitude of soil resistance mechanisms mobilized at the
base and the circumference of laterally loaded piers—thus
retaining the advantages of Winkler-type models while
allowing for realistic representation of the complex
soil–structure interaction effects associated with these
foundation elements.

2. Overview of soil–structure interaction methodologies

The fundamental objective of soil–structure interaction
analysis is illustrated in Fig. 2a (modified from Ref. [14]).
The formulation of the problem comprises a structure with
finite dimensions embedded in soft soil that extends to
infinity and specified time-varying loads acting on the
structure, originating either from forced vibrations of the
superstructure (e.g., rotating machinery) or introduced
through the soil by means of incident seismic waves at the
foundation level. Objective of the problem is to determine
the dynamic response of the structure interacting with
the soil.

The various aspects of the problems are qualitatively
described in the ensuing, along with the corresponding
families of methodologies implemented for the quantifica-
tion of the associated effects. In particular, when the
bounded structure, and any adjacent irregular soil region
that can be regarded as part of the structure, are expected
to exhibit nonlinear behavior, well-established methods of
structural dynamics may be implemented to determine a
finite-element model with a finite number of degrees of
freedom for the structure. The corresponding nonlinear
dynamic equations of motion of the discretized structure
can be then formulated and solved directly in the time-
domain by means of existing numerical methodologies.
Evaluation of the problem solution by means of
the aforementioned methodology is referred to as the
direct approach, which while allowing for the simultaneous
mathematical representation of the structure and under-
lying soil as well as potential nonlinear behavior of
either components, remains quite expensive from a
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computational standpoint, and is thus for the most part
implemented in engineering practice for the design of
critical structures.

An alternative and computationally efficient approach is
the so-called substructure approach, according to which the
soil–structure interaction problem is decomposed into the
three distinct components, namely the soil, the foundation,
and the superstructure, which are successively combined
to formulate the complete solution. Whitman [15] intro-
duced the terms inertial and kinematic interaction to
describe the aforementioned effects, while studies by
Elsabee and Morray [4] confirmed the importance of
kinematic interaction effects, particularly for embedded
foundations.

The term kinematic interaction refers to the effects of the
incident seismic waves to the system shown in Fig. 2b,
comprising the foundation and the supporting soil, which
differ from the complete system of Fig. 2a since the mass of
the superstructure is set equal to zero. On the other hand,
inertial interaction refers to the response of the complete
structure–foundation–soil system to excitation by D’
Alembert forces associated with the acceleration of the
superstructure due to kinematic interaction (Fig. 2c). It
should noted that while the superposition principle is exact
only for linear soil, foundation and structure behavior,
approximations of soil nonlinearity by means of iterative
viscoelastic wave propagation analyses allow superposition
to be approximately employed for moderately nonlinear
systems. The principal advantage of the substructure
approach is the associated numerical flexibility that
comprises the following analysis steps [16]: (i) the seismic
response of the system in Fig. 2a to incident seismic motion
is initially evaluated, while the total relative displacement
field is decomposed into its kinematic and inertial compo-
nents; (ii) successively, the inertial interaction analysis is
conducted by computing the foundation dynamic impe-
dance (i.e., springs and dashpots) associated with each
mode of vibration, namely the oscillation pattern imposed
by the external load (swaying, rocking, etc.), and determin-
ing the seismic response of structure and foundation
supported by these springs and dashpots and subjected to
the kinematic motion of the base.

For each one of the aforementioned analysis steps,
several alternative formulations have been developed and
published in the literature, including finite-element, bound-
ary-element, semi-analytical and analytical solutions, a
variety of simplified methods, and semi-empirical methods.
Perhaps the most popular approaches used in practice for
the analysis of soil–structure interaction problems are
referred to as Winkler models. Employed primarily for
inertial interaction analyses, the foundation in these
methods is supported by a series of independent vertical,
rotational and horizontal springs and dashpots along the
soil–footing interface, which correspond to the vibration
modes. For elastic analyses, the most important factors
affecting the dynamic impedance of foundations are: (i) the
stiffness modulus of the soil; (ii) the stiffness modulus of
the foundation material (e.g., concrete); (iii) the shape of
the foundation (e.g., circular vs. square caisson cross-
section); (iv) the stratigraphy of the soil profile (common
idealizations include homogeneous halfspace, surface soil
layer overlying rigid bedrock or elastic halfspace); and
(v) the amount of embedment. For the estimation of the
dynamic impedance of footings, algebraic expressions have
been developed that account for arbitrary foundation
shape and degree of embedment, and for a variety of soil
conditions. For more details, the reader is referred to
Dobry and Gazetas [17], Wong and Luco [18], Gazetas [9],
Kausel and Roesset [3], and Luco [19].
In these studies, the dynamic impedance of foundations

is shown to be very sensitive to the underlying soil
stratigraphy. The response of a foundation on a non-
homogeneous halfspace can be substantially different from
the response of an identical foundation resting on a
homogeneous halfspace. This effect arises both from the
increase of static stiffness and the decrease of radiation
damping and is more prominent for the vertical and
horizontal oscillations. Subsequently, the amplitude of the
motion to be exerted by the supported structure increases
as a result of the resonant peaks which appear in the
amplitude–frequency response curves (see Refs. [9,20,21]).
In the ensuing, a Winkler model is developed and
implemented in this study for the dynamic and kine-
matic interaction analysis of large diameter embedded
foundations.
3. Winkler model for the analysis of large diameter

embedded foundations

Fig. 3 schematically depicts the stress distribution and
associated stress resultants developed at the foundation–
soil interface, when a typical caisson is subjected to
transverse loading at the top, the former here represented
by a combination of a lateral concentrated load (V) and a
moment (M). As can be readily seen, four mechanisms are
identified as significantly contributing to the pier response
[22]. The mathematical expressions for the resistance
mobilized by these mechanisms are presented below and
comprise the following:
(a)
 Lateral resistance per unit length due to normal stresses
along the shaft:

Ph ¼

Z 2p

0

½sr cos cþ trc sin c�rdc (1)
(b)
 Resisting moment per unit length due to vertical shear
stress along the shaft:

Mh ¼

Z 2p

0

trz

B

2

� �2

cos cdc (2)
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Fig. 3. Primary resistance mechanisms contributing to the overall stiffness

of caisson foundations subjected to transverse loading at ground surface:

(a) stress distribution and (b) normal and shear stress resultants applied on

the circumference and the base of the caisson (modified from Ref. [22]).

Fig. 4. Four-spring model implemented in this study for the macroscopic

representation of the complex resistance mechanisms developed at the

soil–caisson interface (modified from Ref. [23]).
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(c)
 Lateral base resistance due to horizontal shear stress:

Pb ¼

Z B=2

0

Z 2p

0

ð�trz cos cþ tcz sin cÞrdcdr (3)
(d)
 Base resisting moment due to normal stresses:

Mb ¼

Z B=2

0

Z 2p

0

ðsz cos cÞr2 dcdr (4)
Following Mayne et al. [22], Assimaki et al. [23] and
Gerolymos and Gazetas [10–12], a four-spring model is
here implemented to capture macroscopically the afore-
mentioned resistance mechanisms (Fig. 4). The distributed
and concentrated spring functions, calibrated in the
ensuing by means of 3D finite element simulations,
comprise the following: (i) lateral translational springs
representing the lateral force–displacement soil response
(kx); (ii) rotational springs representing the moment
developed at the centerline of pier due to vertical shear
stress acting at the perimeter of pier, induced by pier
rotation (ky); (iii) base translational concentrated spring
representing the horizontal shear force–base displacement
response (Kbx); and (iv) base rotational spring representing
the moment due to normal stress acting at the base of pier,
induced by base rotation (Kby).
The model is based on the assumption that the response

of each soil layer is uncoupled from the overlying
and underlying ones, an approximation of plane strain
response of the foundation element originally proposed by
Novak et al. [24]. As a result, in absence of coupling
between adjacent soil resistance mechanisms, the total
response can be obtained through integration of the
total resistance offered by the individual springs for each
layer. While this assumption is not valid in the immediate
vicinity of soil layer interfaces, for soil layers where
the cross-layer interaction region represents a small
percentage of the total layer thickness (i.e., adequately
thick layers), the coupling effect diminishes very rapidly
with distance from the interface and the overall contribu-
tion of the coupling to total response becomes practically
negligible.
In the ensuing, the response of the model shown in Fig. 4

subjected to transverse loading is investigated by means of
the Euler beam theory formulation, and simplified defor-
mation profiles are developed for typical geometry
characteristics and foundation–soil impedance contrasts.
The overall foundation stiffness matrix ‘as interpreted from
the top of the caisson’ by integration of the individual
resistance mechanisms is successively evaluated based on
the deformation simplifications.
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4. Approximate caisson deformation based on Euler beam

theory

Considering that in the most general case, the response
of an embedded foundation element (e.g., the large
diameter caisson shown in Fig. 4) subjected to transverse
loading at the top can be approximated by means of the
Euler beam theory, the governing equation for static
deformation of a caisson may be formulated as follows:

EpIpu00 ¼M� (5)

where M and V are the concentrated moment and lateral
force at the top of the foundation, u is the lateral
deformation of the foundation element varying with depth
from ground surface, z is the depth from ground surface,
and Ep and Ip are the foundation Young’s modulus and
area moment of inertia correspondingly. Differentiating
Eq. (5) with respect to z yields the following alternative
formulation for the governing equation:

ðEpIpu00Þ00 ¼
q2M�

qz2
(6)

For the foundation element under investigation, namely a
uniform solid cylinder supported by distributed transla-
tional (kx) and rotational (ky) springs along the shaft, and a
concentrated translational (Kbx) and a rotational (Kby)
spring at the base, the moment resultant on a cross-section
at depth z from the surface (Fig. 5) is:

M� ¼M þ Vz�

Z z

0

kyu
I ðtÞdt�

Z z

0

kxuðtÞðz� tÞdt (7)

It should be noted that since the linear elastic idealization
of the soil response is valid only in the small deformation
range, the equation above is based on the undeformed
Fig. 5. Moment resultant at depth z from ground surface, implemented in

the Euler beam formulation for the estimation of the idealized deformed

configuration of the foundation element on Winkler soil subjected to

lateral loading at the top.
configuration of the soil–foundation system, and as a result
second-order geometric effects such as p–d effects have
been neglected.
When substituted into Eq. (6), the above Eq. (7) results

in the following fourth-order differential formulation
describing the deformation of the foundation element, u(z):

EpIpuIV þ kyu00 þ kxu ¼ 0 (8)

The general solution of the fourth-order differential
equation above is u(z) ¼ elz, which substituted in Eq. (8)
results in the following expression:

EpIpl
4
þ kyl

2
þ kx ¼ 0 (9)

The general solution constants are given by the solution of
the biquadratic Eq. (9) as follows:

l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
1

2

ky

EpIp

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

ky

EpIp

� �2

�
kx

EpIp

svuut
(10)

Based on previous studies by Assimaki et al. [23] and
Gerolymos and Gazetas [10–12], the distributed spring
constants are proportional to the soil stiffness and foun-
dation geometry characteristics as kxpEs and kypEsB

2.
As a result, for typical caisson geometries and soil–founda-
tion impedance contrasts:

ky

EpIp

� �2

�
kx

EpIp

(11)

Based on the simplification introduced by Eq. (11) for the
range of interest of the governing variables, Eq. (10) may
be further simplified and the resulting solution constants
may now be formulated as:

l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
a� ib
p

¼ �ðc� idÞ

where

a ¼ �
1

2

ky

EpIp

; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx

EpIp

�
1

4

ky

EpIp

� �2
s

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2

Þ

q
þ a

2

vuut
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2

Þ

q
� a

2

vuut
(12)

The general solution of the beam in the deformed
configuration can be successively written as:

uðzÞ ¼ A1 e
�cz cosðdzÞ þ A2 e

�cz sinðdzÞ þ A3 e
�cðD�zÞ

� cosðdðD� zÞÞ þ A4 e
�cðD�zÞ sinðdðD� zÞÞ (13)

subjected to the following boundary conditions at the
top (z ¼ 0) given by Eq. (14), and base (z ¼ D) given by
Eq. (15) of the caisson:

EpIpu00ð0Þ ¼M

EpIpu000ð0Þ ¼ �ð�V Þ ¼ V (14)

EpIpu00ðDÞ ¼ �ð�Kbyu0ðDÞÞ

EpIpu000ðDÞ ¼ �ð�KbxuðDÞÞ (15)
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Note that for large D/B ratios, Eq. (13) can be simplified to
approximate the response of long piles to lateral loading,
by assuming that the pile does not deform below a certain
critical depth. Since the displacement and rotation at the
base are close to zero, the contribution of the base as part
of the resistance mechanisms on the overall foundation
stiffness can be neglected, and the boundary conditions in
Eqs. (14) and (15) can be simplified as follows:

uðz ¼ DÞ ! 0; u0ðz ¼ DÞ ! 0 (16)

Therefore, for the limit case of very long embedded
foundations, the solution described by Eq. (13) is simplified
to the solution for well-known governing equation for the
deformation of a pile subjected to lateral loading at the top:

uðzÞ ¼ A1 e
�cz cosðdzÞ þ A2 e

�cz sinðdzÞ (17)

and is subjected to the boundary conditions at the top as
described by Eq. (14). As can be readily seen from Eq. (17),
if large diameter caisson foundations were treated as the
lower-bound limit case of piles and the distributed
translational spring kx were considered as the sole
resistance mechanism at the foundation–soil interface,
Eq. (17) would be further simplified to the standard
equation for lateral loading of piles:

uðzÞ ¼
e�az

2a2EpIp

V

a
þM

� �
cosðazÞ �M sinðazÞ

� �
(18)

where

a ¼
kx

4EpIp

� �1=4

Successively, employing series expansion of the products:

e�az cosðazÞ ¼ 1� 2azþO2 power terms

e�az sinðazÞ ¼ azþO2 power terms (19)

and accounting for the results of the dimensional analysis
described above (kxpEs and kypEsB

2), for high values of
pile–soil impedance contrast and low values of foundation
aspect ratios, i.e., Ep/kxpEp/Esc1 and low D=I1=4p / D=B,
the maximum value that could be attained by the exponent
term (az) is:

maxfazg ¼
kx

4EpIp

� �1=4

D� 1 (20)

Introducing the simplification described by Eq. (20) into
Eq. (18), we can see that the higher order terms in Eq. (19)
would decay much faster and hence the deformed shape
could be approximated by considering terms of only first
order. The resultant expression is thus similar to a rigid
body response and can be expressed as:

uðzÞ ¼ ut � yz (21)

where ut is the translation at the top of the foundation and
y is the rigid body rotation.

It should be noted that Eqs. (19) and (20) are here
formulated to provide the limit conditions at which the
response of flexible piles approaches a rigid body response
for small values of a, i.e., high Ep/Es and low D/B ratios. In
reality, for very low values of a or low flexibility, the
assumption in Eq. (16) that the base does not significantly
participate in the global response is not valid, and hence a
complete four-spring model with boundary conditions as
described by Eqs. (14) and (15) should be used.
Successively, characteristic values are implemented in

Eq. (13) (four-spring model) and Eq. (17) (two-spring
model) for the distributed and concentrated springs,
selected here as the static plane strain solution proposed
by Novak et al. [24] for the former and the surface circular
foundation stiffness on elastic halfspace proposed by
Veletsos and Wei [25] and Veletsos and Verbic [26] for
the latter, namely:
�
 Distributed translational and rotational springs (Ref. [24]):

kx

E
¼ 1:2;

ky

EB2
¼ 0:3 (22)
�
 Base translational and rotational spring (Ref. [25]):

Kbx ¼
8GR

2� n
; Kby ¼

8GR3

3ð1� nÞ
(23)

The response predicted by the four-spring and the two-
spring models subjected to a unit lateral load (V) at the top
for three values of aspect ratio (D/B ¼ 2, 6 and 10)
is illustrated in Fig. 6a, while Fig. 6b depicts the predi-
cted response of the model as a function of the aspect ratio
(D/B) and the impedance contrast (Ep/Es). Based on the
results shown, it can be readily seen that:
(i)
 While for large aspect ratios (D/B410), the four-
spring response may be approximated by the pile
solution described by Eq. (17), for D/Bo10 the base
has a significant effect on the response and hence
cannot be neglected;
(ii)
 The range of D/B ratio for which the response may be
approximated by a rigid body is also a function of the
impedance contrast Ep/Es; note that for typical
reinforced concrete or steel casing and soft-medium
soil deposits, this ratio is on the order of 104–105; and
(iii)
 For stiffness ratios on the order of 104–105, the
variation in rotation along the length is less than 5%
for aspect ratios D/Bo6, rendering the rigid body
approximation valid.
5. Stiffness matrix formulation for rigid body deformed

configuration

As shown above, the caisson is anticipated to respond as
a rigid body for typical ranges of soil and foundation
stiffness, and aspect ratios D/Bo6. Therefore, upon the
application of a lateral force (V) and an overturning
moment (M) at the top, the net translation and rotation
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exerted by the caisson are depicted by Fig. 7, and may be
adequately described in terms of the displacement at the
top (ut) and the rotation angle of the rigid pier (y).
In the ensuing, the overall foundation lateral, rocking

and coupled stiffness components as seen from the top of
the element are formulated in a complex form, where the
real term refers to the corresponding static stiffness
coefficient multiplied by a factor that represents the
potentially altered resistance of the foundation element
when subjected to dynamic loading, and the imaginary
term to the radiation of energy away from the foundation
during the cyclic vibrations (radiation damping):

Kn
¼Kstatk

0ða0Þ þ ia0Cða0Þ (24)

where Kstat is the static (push-over) stiffness a0 ¼ oB/Vs is
the dimensionless frequency with o, B, and Vs being the
loading frequency, pier diameter, and soil shear wave
velocity correspondingly, k(a0) is a frequency-dependent
stiffness coefficient, and Cða0Þ is the frequency-dependent
radiation damping component of the complex stiffness.
Under the assumption of rigid body response to

transverse loading, the dynamic response at any point
along the caisson is approximated by Eq. (21), namely:

unðzÞ ¼ un

t � ynz (25)

where the superscript (*) indicates the complex response,
namely the amplitude and phase of the top displacement
and rotation. Successively, requiring dynamic equilibrium
of forces in the horizontal direction:

Vn ¼

Z D

0

kn

xunðzÞdzþ Kn

bxunðDÞ þ

Z D

0

m €un
ðzÞdz

¼ un

t ½ðk
n

x � o2mÞDþ Kn

bx�

þ yn �ðkn

x � o2mÞ
D2

2
� Kn

bxD

� �
(26)

and evaluating moment equilibrium at the top of the
caisson:

Mn ¼ �

Z D

0

kn

xunðzÞzdz� Kn

bxunðDÞD

þ

Z D

0

kn

yy
n dzþ Kn

byy
n
�

Z D

0

m €unðzÞz dz

)Mn ¼ un

t �ðk
n

x � o2mÞ
D2

2
� Kn

bxD

� �

þ yn ðkn

x � o2mÞ
D3

3
þ Kn

bxD2 þ kn

yDþ Kn

by

� �
(27)
Fig. 6. (a) Comparison between the predicted response of the four-spring

and two-spring approximations of an embedded foundation element

idealized as an Euler beam on Winkler soil subjected to a unit lateral load

at the top (V ¼ 1, M ¼ 0), for three values of aspect ratio. (b) Normalized

deformation and rotation of beam on linear elastic four-spring Winkler

soil as a function of the aspect ratio (D/B), and the pier–soil stiffness

contrast (Ep/Es), for a unit lateral load (V ¼ 1, M ¼ 0) applied at the top.
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the following expression is formulated for the overall
foundation dynamic stiffness matrix as interpreted from
the top, when expressing Eqs. (26) and (27) in a matrix
form:

Vn

Mn

" #
¼

Kn

xx Kn

xr

Kn

rx Kn

rr

" #
un

t

yn

� �
(28)

where the left-hand side of the equation represents the
dynamic forcing function (F*) applied at the top of
the foundation, and the right-hand side corresponds to
the product of the complex stiffness matrix (K*) of the
soil–foundation system as interpreted from the foundation
top to the response vector (U*), namely the displacement
and rotation of the caisson. In Eq. (21), the individual
components of the stiffness matrix correspond to the
following expressions:
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Following the dimensional analysis described by Assimaki
et al. [23] and Gerolymos and Gazetas [10–12], the complex
stiffness terms in Eq. (28) are normalized with respect to
the Young’s modulus of soil (Es) and the diameter of pier
(B), namely the stiffness and geometry characteristics of the
surrounding soil and foundation element, respectively. In a
dimensionless form, the equations are given as follows:
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and rc, rs are the mass densities of the caisson foundation
and surrounding soil correspondingly.

6. Three-dimensional finite element simulations

The stiffness matrix described by Eq. (28) can be
numerically evaluated by computing the displacements
and rotations at the top of the caisson resulting from the
application of a unit lateral force and a unit overturning
moment, and inverting the response matrix as shown
below:
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" #
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uV uM

yV yM

" #�1
(36)

where uV and yV are the displacement and rotation
correspondingly at the top that result from the application
of a unit force, and uM and yM are the corresponding terms
obtained by application of a unit moment.
This methodology, referred to as the flexibility approach

and extensively employed for the analysis of problems
in structural mechanics, is also employed in the ensuing
for the calibration of the distributed and concentrated
springs applicable for caisson foundations in the aspect
ratio range 2oD/Bo6 by means of 3D finite element
simulations. In particular, numerical simulations are
conducted in this study using the finite element software
package DYNAFLOW (Ref. [27]) and validated, for the
case of static loading using the software package ABAQUS
(Ref. [28]). Taking advantage of the symmetry of the
problem (geometry and uniaxial loading), only half of the
numerical domain is simulated, thus reducing considerably
the required computational effort. Further reduction in the
computational effort for this configuration (namely a
circular cross-section subjected to transverse loading) can
be achieved by using a 2D axisymmetric model and
decomposing the asymmetric loading in terms of Fourier
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Fig. 8. Sensitivity analysis of finite element mesh discretization and

location of far-field boundaries: mesh A with cylindrical far field and

MESH B with rectangular far-field.
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modes with respect to the angular coordinate. Nonetheless,
since such analysis is not feasible for other cross-sections
such as square and rectangle, the 3D model is selected in
this case to allow generalization of the macroelement
development framework presented in the ensuing.

Both the soil formation and caisson foundation were
simulated using 3D continuum soil elements (eight-node
brick elements) in this study, while for the purpose of this
work, linear elastic material models were implemented and
perfect bonding was assumed at the interface, i.e., no
separation was allowed under tensile stress. This assump-
tion is equivalent to that of a cylindrical foundation
‘welded’ in soil, as described by Kausel [20]. The unit
lateral load was applied at the center of top of caisson,
whereas the moment was applied using vertical loads at
diametrically opposite circumferential nodes on the top of
caisson.

A direct Crout-column solver, namely a form of Gauss
elimination also known as LU factorization, was imple-
mented for the simulated configurations to minimize the
effects of numerical integration instabilities in the analy-
tical approximations to be developed on the basis of
the numerical simulations. Note that the Crout-column
method is based on the decomposition of the matrix of
unknowns into a lower triangular matrix (L), an upper
triangular matrix (U) and a permutation matrix (P), the
latter of which is used in the matrix inversion in the
solution of linear equation systems. The various aspects of
the numerical discretization and simulation of the problem
under investigation are briefly described in the following
sections.

6.1. Truncated numerical domain shape and discretization

Mesh sensitivity studies were conducted for the element
size, far-field shape and far-field distance. For the static
simulations, comparison between DYNAFLOW simula-
tions with fixed far-field and ABAQUS simulations with
infinite elements in the far-field indicated that implementa-
tion of lateral far-field distance of 5B is not sufficient for
the representation of the problem. Results indicated that
increasing the far-field distance to 10B provided sufficiently
accurate results with less than 5% discrepancy in the
estimated response by means of the two alternative
solutions.

Two types of meshes were compared, which are
schematically depicted in Fig. 8. In mesh-type A, the far-
field is cylindrical in shape, and the computational domain
discretization is finer in regions close to the pier resulting in
accurately depicted stress distribution at the soil–founda-
tion interface and coarser towards the far-field, with ele-
ment size proportional to the distance from caisson axis.
Also, the element thickness was selected to be constant
with depth from ground surface and equal to 0.25B, while
the finite element length-to-width ratio was also retained
less than 3 throughout the mesh to avoid numerical
distortion effects. On the other hand, in mesh-type B, the
far field is rectangular in shape, the computational domain
discretization is almost uniform throughout the model, the
elements are for the most part cubical in shape with
dimension 0.25B, and the transformation from cylindrical
to rectangular shape is performed gradually with distance
from the caisson axis towards the far-field.
Benchmark static and dynamic simulations were con-

ducted with both mesh-types, and while results were found
to be in excellent agreement for adequately large truncated
numerical models, the adaptive mesh-type A was selected
for the purpose of this work due to the advantages
associated with increased computational efficiency. In
particular, the adaptive mesh discretization of model A
where the finite element size increases with distance from
the pier, results in a numerical model that comprises of the
minimum required number of elements and correspond-
ingly reduces the associated computational time. None-
theless, the resulting element size that increases with
distance from the pier implies that the accurate representa-
tion of wave propagation restricts the far field to a
maximum distance from the foundation center, namely
the distance where the element size equals the maximum
element size permitted by frequency consideration (2.5B in
this case). Beyond the element size constrained far-field
however, numerical attenuation is observed as a result of
the element size, whose contribution is beneficial by
artificially increasing the effective radiation damping and
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hence improving the performance of the far-field truncated
conditions. A complete description of the far-field dynamic
boundary conditions is provided in the ensuing.

The numerically accurate representation of wave propa-
gation problems susceptible to numerical attenuation
because of under sampling requires at least six to seven
elements per wavelength. Based on this requirement,
lmin/6XkB where k is the ratio of size of largest element
to B, and lmin is the highest frequency component of
interest propagating wavelength. As a result, the maximum
dimensionless frequency that can be simulated with
sufficient accuracy is described by the following expression:

a0 ¼
omaxB

vs

¼
2pf maxB

vs

¼
2pB

lmin
p

2p
6kmin

(37)

For the case of Model A implemented in the foregoing
simulations, the ratio of the maximum element size to
foundation width is k ¼ 0.67, and therefore the maximum
dimensionless frequency represented is approximately
amaxE3.5. Based on the aforementioned highest accurately
represented frequency, the minimum time step is conse-
quently given by the following expression:

t ¼
kB

vs

¼
kB

f l
p

1

6f
¼

Tmin

6
(38)

In the simulations presented in the ensuing of this study, a
time step of Tmin/20 to Tmin/40 has been employed to
ensure the accurate representation of the propagating
wavelengths.

6.2. Far-field boundary conditions: forced vibrations and

seismic incident motion

While fixed boundary were implemented for the purpose
of the static analyses conducted in this study, their use was
prohibited for the case of dynamic or transient response
problems by the resulting spurious reflections of the elastic
waves from the boundary towards the truncated numerical
domain, an effect particularly pronounced in the absence
of material damping. Therefore, alternative boundary
conditions were investigated and their relative advantages
and disadvantages are briefly described in the ensuing.

It is well known that for the case of one-dimensional
(1D) simulations, effective truncation of the numerical
domain may be achieved at any distance from the
disturbance origin by means of viscous damping elements
at the boundary. On the other hand, for 2D and 3D
simulations of wave propagation in an unbounded
medium, considering that the stress at any point within
the domain is proportional to the particle velocity at that
location as follows:

si ¼
_ui

rV
(39)

where si is the stress (compressional or shear), _ui is the
particle velocity at the point of interest, r is the density of
the material of propagation, and V is the waveform
propagation velocity within the medium, implementation
of dashpots with coefficients CP ¼ rVP in the direction of
the compressional wavefront propagation and CS ¼ rVS

parallel to the shear wave polarization may be used to
approximate the target outgoing wave energy absorbing
boundary condition in the far-field, with the exception of
the following cases: (a) high angle of incidence of the
outgoing waves (usually 4201); or (b) multiple waves
reaching the boundary (body, surface, etc.). For the
simulations conducted in this study, both surface and
body waves are generated at the caisson–soil interface
during dynamic loading, and the resulting wave field has
very high angle of incidence with respect to the boundary
orientation at many locations. As a result, dashpot-type
boundary conditions could not be implemented to success-
fully truncate the numerical domain.
The implementation of infinite elements in the far-field,

namely elements with decaying shape functions for large
distances (e.g., e�x or 1/x) was successively investigated.
Infinite elements are typically used in conjunction with
finite elements in boundary value problems defined in
unbounded domains, or problems where the region of
interest is small in size compared to the surrounding
medium, and provide residual far-field stiffness for static
problems and quiet boundaries for dynamic problems.
Nonetheless, the formulation of these elements requires a
priori approximate knowledge of the solution, in order for
the shape functions to approximate as closely as possible
the actual solution of the problem, as well as definition of
the stress- or displacement-based boundary conditions at
infinity (i.e., very large distance from the disturbance).
Even further though, the use of infinite elements has been
shown to also yield unsatisfactory results for large angles of
incidence of waves at the boundaries, and was therefore
prohibited for the 3D finite element problem under
investigation. An overview for infinite elements is given
by Bettes and Bettes [29].
For this purpose, a new type of boundary was

implemented in this study, hereby referred to as sponge
boundary and schematically depicted in Fig. 9a. In
particular, the reflection of outgoing waves back into the
region of interest is avoided by enclosing the region in the
‘sponge layer’ with progressively increasing damping
coefficients. The mechanical sponge layer–soil impedance
is approximately equal to unity thus minimizing the
generation of reflected waves at the interface, while energy
absorption is represented by means of Rayleigh damping
increasing with distance to avoid any spurious reflections
due to sudden change in impedance. The thickness of the
sponge layer required for the absorption of the outgoing
energy is estimated based on the anticipated frequency
content of the excitation and the natural frequencies of the
propagating medium, and a brief description of the process
is given in the ensuing. The implementation of Rayleigh
damping within the context of finite element numerical
models for the solution of the wave equation in a visco-
elastic medium, the damping matrix is assumed to be
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proportional to the mass and stiffness matrix as:

C ¼ aM þ bK (40)

Successively, the modal damping ratio of the multi-degree
of freedom system is calculated as:

D0 ¼
1

2
aoþ

b
o

� �
(41)

where a and b are the mass proportional and stiffness
proportional damping coefficients correspondingly. For
the propagation of a sinusoidal wave of unit amplitude and
frequency o in the viscoelastic medium of the following
form:

uðx; tÞ ¼ eioðt�x=vÞ (42)

The use of the viscoelastic correspondence principle results
in the following expressions:
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where E is the elastic modulus corresponding to the
type of propagating body wave in the medium, V is the
velocity of propagation of the wavefront, and a0 ¼ 2D0=

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D0

2
p

Þ.
Substituting Eq. (41) that describes the complex modulus

formulation into Eq. (42), which in turn describes the
ampli-
tude of the outgoing waves in the viscoelastic medium, the
latter may be expressed as:

uðx; tÞ ¼ eioðt�x=v�Þ ¼ e�ðox=vÞa0 eioðt�x=vÞ

¼ e�ðox=vÞa0u0ðx; tÞ ¼ Aðo;xÞu0ðx; tÞ (44)

For the purpose of this study, imposing on Eq. (44) the
requirement of minimization of the truncated numerical
domain of the finite element model due to computational
restrictions, as well as ensuring adequate distance of the
sponge layer from the pier to allow for efficient simulation
of far-field conditions, resulted in the optimal thickness of
sponge layer to be selected as Ls ¼ 2B.
The coefficients a and b within the sponge layer, varying

as a function of distance away from the pier, were selected
under the following criteria: (i) to optimize the uniformity
of damping ratio D0 distribution over the frequency range
of interest, which determines the a/b ratio, and (ii) to
ensure that the damped wave amplitude at the far-field
boundary would be on the order of 5% of the undamped
amplitude (i.e., at the truncated domain/sponge layer
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Fig. 10. Schematic representation of the Substructure Theorem for

soil–structure interaction problems (the interaction problem is shown on

the top, and the free-field problem on the bottom figure).

Table 1

Mass and stiffness dependent Rayleigh damping coefficients used within

the sponge boundary

Radial soil layers of sponge boundary

1 2 3 4

a 5 10 15 20

b 0.0125 0.0250 0.0375 0.05

Soil layers 1–4 correspond to cylindrical sections of the far-field at

increasing radial distance from the caisson center.
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interface), which determines the magnitudes of the
coefficients a and b. For the purpose of this study, the
first criterion requirement yielded a ratio of a/b ¼ 400, and
the variation of the resulting D0 distribution with frequency
is depicted in Fig. 9b. The requirement of 95% attenuation
in wave amplitude within the sponge layer resulted in
maximum values of the coefficients a and b to be a ¼ 20
and b ¼ 0.05, which were successively distributed in four
layers of radial thickness 0.5B; the resulting coefficients of
each layer (1–4 from the interior domain towards the
boundary) are shown in Table 1, while the resulting
amplitude reduction function A(o, x) with frequency
described by Eq. (42) is shown in Fig. 9c.

6.3. Far-field boundary conditions: kinematic soil–structure

interaction

In order to evaluate the kinematic response of the
foundation, namely the response of the large diameter
caisson to the incidence of seismic waves, the input motion
is prescribed directly to the region of interest in form of
effective forcing functions at the base and lateral bound-
aries of the numerical domain bounded by sponge
boundaries. The forcing functions for lateral boundaries
are evaluated as the 1D response of the corresponding soil
columns. The difference between the 1D motion and 2D
response evaluated at the far-field is actually the scattered
energy of the system, which propagates outwards from the
irregularity and is absorbed by the artificial boundaries.
The evaluation of consistent boundary conditions pre-
scribed around the numerical domain of interest is based
on the Substructure Theorem [3]. According to this
theorem, the free-field vibration problem can be decom-
posed into substructures (the far-field and the soil–struc-
ture configuration, referred to as near-field) as shown
schematically in Fig. 10.

Since the excitation is exactly the same for the far-field
and the interaction problem, differences in the interface
displacements (DU ¼ Ub �U�b) are solely attributed to
differences in the interface stresses (DS ¼ Sb � S�b). If the
far-field is now subjected to forces DS, in the absence of
seismic excitation, displacements DU will be produced,
such that DS ¼ X�DU, where X is the frequency-
dependent dynamic impedance matrix of the far-field, i.e.,
the stiffness of the far-field as seen by the interface.
Substituting the forces and displacement differences at the
boundaries, we obtain:

�Sb ¼ �XUb þXUn

b � Sn

b (45)

Since the domain is infinite, the equivalent spring
stiffness implied by X is zero. The stresses XUn

b � Sn

b

correspond to the far-field motion and are applied to the
lateral boundaries. For the wave-propagation problem
analyzed herein, the far-field motion is defined as the
response of a one-dimensional soil column, subjected to the
input motion prescribed at the base of the two-dimensional
configuration. Successively, the fictitious forces prescribed
at the lateral boundaries of the three-dimensional model
are determined as follows for the case of SH-wave
incidence:
(a)
 S�b corresponds to the vertical reaction preventing the
vertical motion at the far field boundary; and
(b)
 XU�b ¼ rVs
_U
�

b corresponds to the product of the
calculated far field (1D) response and impedance,
where _U

�

b the velocity time history at the 1D column
nodes, and Vs the S-wave velocity at the corresponding
location.
For the purpose of this study, the forces are applied in
form of surface loads (tractions) both at the base and the
lateral boundaries in the 3D model. It should be noted that
the Substructure Theorem is based on the principle of
superposition, and is therefore applicable to linear pro-
blems as well as approximately applicable to moderately
inelastic systems.

6.4. Comparison with embedded foundation and pile theories

It has been shown in Eq. (30) that the global stiffness
matrix is symmetric, i.e., the off-diagonal coupled stiffness
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terms (Kxr ¼ Krx) are equal, and consequently, the
flexibility matrix that results from inversion of a symmetric
matrix is also expected to be symmetric. Nonetheless, since
3D solid elements were used for the numerical representa-
tion of the caisson, the rotation at the top could not be
measured directly by computing the gradient of lateral
displacement, and was therefore calculated indirectly using
the displacements of the center points at the top and
bottom of caisson as (ut�ub)/D. The latter therefore is
based on the assumption of a rigid body deformation and
represents effectively the average or mean rotation of the
caisson over its length.

If the responses were indeed perfectly rigid (the limit of
the material stiffness to infinity), the average rotation
would be the same as the rotation at the top of caisson,
however, as the flexibility of caisson increases, the average
rotation starts deviating from the true rotation at the top of
the caisson which can also be observed in Fig. 6b. Readily
stemming from this concept, while one of the cross-terms in
the flexibility matrix of Eq. (36) corresponds to a rotation
at unit load, the second one is obtained as a displacement
at unit moment and is thus not subjected to the averaging
of the response along the length of the foundation. As a
result, therefore, the deviation between the two cross-terms
may be used as an indication of the error introduced by
the rigidity assumption of the caisson, and Fig. 11 depicts
the sensitivity of the coupled stiffness Kxr ¼ Krx to the
predicted system response, namely the variation of the
expression:

dKxr

Kavg
xr

¼ 2
Kxr �Krx

Kxr þKrx

(46)

as a function of the aspect ratio D/B for soil Poisson ratio
n ¼ 0.3 and foundation–soil impedance ratios Ep/Es ¼ 104

and 105, representative of the cases of concrete and steel
pier, respectively. Note that for D/B ratios larger than 6,
the deviation is shown to exceed 0.05 (5%) for Ep/Es ¼ 104,
and as a result, the assumption of a rigid pier is considered
valid only for aspect ratios D/Bp6.

Within the aforementioned region of applicability
of the rigid response approximation in terms of material
Fig. 11. Deviation of pier from rigid behavior for different pier–soil

impedance ratios (Ep/Es), illustrated by means of the coupled stiffness

sensitivity as a function of the aspect ratio D/B for two foundation–soil

impedance contrasts.
stiffness contrast and foundation geometry characteristics,
Fig. 12a–c shows the comparison of results obtained for the
global stiffness matrix of the caisson foundation via 3D
finite elements with existing formulations by Kausel [20],
Wolf [30] and Elsabee and Morray [4] developed for
shallow foundations, by Davidson [31] and Gerolymos and
Gazetas [10–12] for caisson foundations, and by means of a
four-spring model with base springs equal to the expres-
sions by Veletsos and Verbic [26] for a surface foundation
on elastic halfspace, and shaft resistance by Novak et al.
[24]. As can be readily seen, the models proposed by Kausel
[20], Elsabee and Morray [4], Wolf [30], and Davidson [31]
fail to capture at least one of the three global stiffness terms
Fig. 12. Comparison of global stiffness matrix components of foundation

as interpreted from the top of the caisson between FE simulations and

embedded foundation published formulations.
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for the foundation system. On the other hand, stiffness
values predicted by springs obtained from combination of
formulations by Novak et al. [24] and Veletsos and Verbic
[26], namely constant spring values independent of the
foundation aspect ratio (D/B) based on plane-strain theory,
is a good approximation to the configuration investigated
here. Nonetheless, while the latter combined approach
captures qualitatively the overall variation of stiffness as a
function of D/B, it quantitatively predicts lower stiffness
values than the actual ones obtained by means of 3D finite
element simulations.

Successively, Fig. 13a shows the location of center of
rotation of pier as a function of eccentricity of applied
loading obtained from 3D simulations and by means of the
Euler beam theory (four-spring formulation). It should be
also noted herein that results showed that the four-spring
approximation of the pier may capture the true response
much better than the two-spring model, while the ob-
served deviation from the two-spring model was shown to
increase as D/B ratio decreased and base effects would
become more pronounced; the latter observation is
depicted in Fig. 13b.

Based on the aforementioned conclusions, it is clear that
neither the embedded foundation nor the pile existing
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Fig. 13. (a) Location of center of rotation from 3D FE analysis and

analytical solution (four-spring beam theory) and (b) comparison of center

of rotation predictions via the four-spring proposed model, and the two-

spring simplified representation, where the base resistance mechanism

contributions are ignored.
models may be used to capture all the three global modes
of soil resistance for the case of large diameter embedded
(caisson) foundations. There exists therefore a clear
need to calibrate the springs of the proposed model,
which may be successively employed for the evaluation of
the overall foundation stiffness; evaluating the lateral,
rocking and coupled stiffness at the top of the foundation.
The calibrated dimensionless spring constants may
successively be used in analyses of structural response,
replacing the continuum formulation of the infinite domain
and foundation element by the foundation–soil stiffness
matrix.
7. Calibration of Winkler spring model for caisson

foundations

The distributed lateral springs along the length and
concentrated spring at the base of the pier, namely kx and
Kbx correspondingly, were in this study estimated from
the finite element-based simulations by equating the
overall lateral and coupled stiffness of the pier shown in
Eqs. (33) and (34) to the numerically evaluated stiffness as
follows:

kx ¼ 2
KxxDþKxr

D2

� �
; Kbx ¼ �

KxxDþ 2Kxr

D

� �
(47)

Successively, the overall rotational stiffness of the founda-
tion as interpreted from the top, described in Eq. (35), can
be expressed in the following form:

Krr � kx

D3

3
þ KbxD2

� �
¼ kyDþ Kby (48)

It should also be noted that for the estimation of the
distributed rotational (ky) and base rotational (Kby) spring
functions, the equality described by Eq. (47) was evaluated
for two different values of D within very close proximity to
each other, based on the inherent stability assumption of
the corresponding resistance mechanisms with (D/B),
which was successively verified by means of the finite
element simulations for the range of aspect ratios of
interest. The resulting variation of the four spring values
as a function of the foundation aspect ratio is shown in
Fig. 14.
As shown in Fig. 14, resolving the spring functions by

means of the flexibility approach based on the finite
element-based estimated response leads to the obser-
vation that the base rotation spring Kby contribution
decreases significantly with D/B, and becomes negligible
for D/B40.75. Similar behavior is observed for the
variation of the distributed rotational spring ky for aspect
ratios D/B45–6. The trend observed is directly stemming
from the procedure employed here for the derivation of the
spring functions: as the aspect ratio D/B increases, the
contribution of ky and Kby to the global rotational stiffness
Krr compared to kx and Kbx decreases. As a result, Krr
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becomes increasingly insensitive to changes in values
of these two springs for higher D/B ratios, a fact that
renders the interpretation of their corresponding functions
by means Eq. (48) (i.e., equating the analytically and
numerically derived global rotational stiffness (Krr)
to derive the variation of Kby and ky) cumbersome for
large values of the aspect ratio (i.e., D/B ¼ 0.75 for Kby,
and D/B ¼ 5–6 for ky). As a result, for the aspect ratio
region beyond which the rocking stiffness becomes
insensitive to changes in value of the aforementioned
springs, the corresponding mechanism of soil resistance
may be neglected altogether, which results in a simplified
analytical model of the caisson foundation. Based on
this interpretation, the response of pier can be broadly
classified into three main zones depicted in Fig. 14a,
namely Zone I for D/B ¼ 0–2 (four-spring model), Zone II
for D/B ¼ 2–6 (three-spring model), and Zone III for
D/B46 (two-spring model). The behavior of individual
springs as a function of the aspect ratio is summarized
below:
(i)
 The distributed lateral spring kx decreases rapidly
with D/B ratio within Zone I that corresponds to
the embedded foundation aspect ratio region, beyond
which it becomes constant with normalized value
kx/E ¼ 1.48, which is comparable to the value of
kx/E ¼ 1.2 predicted by Gazetas et al. [32] under the
assumption of plane strain response. This behavior is
most possibly attributed to the fact that at higher
embedment depths, the soil layer response becomes
increasingly uncoupled from the adjacent layers, and
the resulting minimal mobilization of shear resistance
does indeed approximate plane strain conditions. On
the contrary, the interaction between adjacent layers
is significant for shallow foundations represented in
Zone I, resulting in higher resistance mobilized in
between due to shear interaction and increasing value
of kx with decreasing aspect ratio (D/B). Similar
expressions for the variation of the lateral resistance as
a function of the aspect ratio have been developed by
Gerolymos and Gazetas [10] and Mylonakis [33] as
shown in Fig. 14b.
(ii)
 The base lateral spring Kbx/EB evaluated by means of
finite elements is found to be 0.92 for surface
foundations (D/B ¼ 0), which is in excellent agreement
with the value predicted by the formulation of Veletsos
and Verbic [26] for the horizontal impedance of
circular foundations on elastic halfspace; for D/B40
ratios, Kbx increases, a behavior attributed to the so-
called trench effect according to which, the soil at
deeper layers is more constrained as compared to
the surface and therefore mobilizes a higher shear
resistance.
(iii)
 The value of the distributed rotational spring ky

increases with D/B and becomes approximately con-
stant for 4oD/Bo6. The increase is explained by the
increase in confinement due to trench effect and higher
shear resistance mobilized at the sides. The contribu-
tion of this mechanism of soil resistance significantly
reduces for D/B46, namely in Zone III where the
contribution of this mechanism to global stiffness
matrix starts becoming negligible.
(iv)
 The base rotational spring Kby/EB3 has a value of 0.18
in the very low aspect ratio D/B5(shallow embedded
foundation) region, which is in very good agreement
with the theoretical rocking stiffness predicted by the
formulation by Veletsos and Verbic [26] for surface
foundations. Nonetheless, since the relative contribu-
tion of this spring to total rocking stiffness is very
small, it may be neglected with no loss of accuracy in
the solution for D/B41. For the case of an end
bearing foundation with Eb as the base layer stiffness,
as Eb/Es contrast increases the value of lateral base
resistance Kbx also increases in the same proportion as
the base rotational spring Kby and for very large
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contrast ratios, the global rocking stiffness is pre-
dominantly controlled by the base resistance mechan-
isms represented by Kbx and Kby. Nonetheless, since
the relative contribution of Kbx (which is an increasing
function of D/B ratio) to the rocking stiffness is much
higher than Kby, the error introduced by neglecting Kby

is less than 5% even for D/B as low as 2 and Eb/Es as
high as 103.
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Fig. 15. Least-square curve fitting for distributed translational (top), base

translational (middle), and distributed rotational (bottom) spring varia-

tion as a function of D/B evaluated by means of 3D FE simulations.
It should be also noted that for aspect ratios D/B46 and
relative foundation/soil stiffness corresponding to concrete
piers, the response of the foundation is shown to deviate
significantly from the perfectly rigid assumption. In this
aspect ratio range, the caisson behaves as a flexible
foundation, and the response can be estimated by means
of the p–y spring approach. Note that for a linear elastic
medium, the p–y curve is represented by the distributed
lateral spring kx. Using the spring values of the simplified
three-mechanism analytical model obtained by means
of finite element simulations, simplified expressions are
derived by means of least-square curve fitting for the aspect
ratio range under investigation (namely D/B ¼ 2–6) as
follows:

kx

E
¼ 1:828

D

B

� ��0:15
(49)

Kbx

EB
¼ 0:669þ 0:129

D

B

� �
(50)

ky

EB2
¼ 1:106þ 0:227

D

B

� �
(51)

The fitted expressions of the results are shown in Fig. 15a–c
for the lateral distributed, base concentrated lateral and
distributed rotational stiffness, respectively. Sensitivity
analyses investigating the effects of Poisson ratio varia-
bility in the predicted response indicated that the overall
stiffness terms are for the most part insensitive to changes
in Poisson ratio. Therefore, the variation of spring
coefficients with Poisson ratio is neglected here without
loss of accuracy for the range of aspect ratio of interest, i.e.,
the spring functions described above are evaluated
independent of the value of Poisson ratio.

7.1. Frequency-dependent soil resistance: calibration of

dynamic springs

For the calibration of the dynamic spring functions, the
flexibility approach described above was also implemented
here according to which unit force and moment sinusoidal
functions were applied at the top of the foundation to
evaluate the dynamic response. Successively, the amplitude
and phase difference of displacements and rotations were
measured, and the response was expressed by means of
complex functions that were next used to estimate the
complex springs.
In equivalence to the definition of the global stiffness
matrix components shown in Eq. (24), the dynamic springs
are also defined as K*

¼ Kstatk
0(a0)+ia0C(a0), and the

numerically estimated variation of stiffness coefficient
k0(a0) and normalized damping parameter C(a0) as a
function of the dimensionless frequency a0 estimated in
this study is shown in Fig. 16a–f. The numerically derived
variation is shown to fluctuate with frequency, a behavior
most probably attributed to local resonances within the
truncated numerical domain due to the finite dimensions of
the model, as well as potential scattered energy from the
absorbing far-field boundaries. Nonetheless, for the range
of aspect ratios (D/B) investigated here, the variation of
spring coefficients with dimensionless frequency was
approximated by the expressions of Eq. (52), which based
on successive comparison with numerical analyses were
shown to yield satisfactory results in approximating the
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response of caisson foundations subjected to dynamic
loading:

k0x ¼ 1� 0:1a0; k0bx ¼ 1; k0y ¼ 1� 0:225a0

Cx

E
¼

1:85a0 a0o1

1:85 a041

(

Cbx

EB
¼

0:6a0 a0o0:6

0:36 a040:6

(
(52)

It should be also noted here that the variation of
attenuation coefficients for the distributed rotational
springs Cy attain negative values in the frequency range
of interest (Fig. 16f), an effect indicating that the waves
produced by the side shear resistance are out of phase with
those produced by other resisting mechanisms. As a result,
the wavefield produced by the lateral distributed shear
resistance (i.e., the mechanism corresponding to the lateral
rotational springs) destructively interferes with the wave-
field produced by the translational mechanisms, thus
obstructing the energy radiation away from the system.
The distributed rotational attenuation coefficient Cy

increases with frequency for values of normalized fre-
quency, and successively decreases for a041. Finally, for
a042, it attains values approximately zero, indicating that
no energy is being radiated towards the far-field as a result
of the rocking mechanism along the shaft of the caisson.
The rotational attenuation coefficient is also found to
increase in proportion to the aspect ratio (D/B), a behavior
that may be approximated by the following expression:

Cy

EB2
¼

�0:21 D
B

� �
a0 a0o1

�0:21 D
B

� �
ð2� a0Þ 1oa0o2

0 a042

8><
>: (53)

The validity of the approximate expressions derived above
is evaluated in the ensuing by comparison of the analy-
tically predicted response computed by means of the fitted
expressions to the numerically predicted response of the
foundation–soil system.

7.2. Example of application: multi-layered soil deposit

An example of application of the Winkler model
developed above is next illustrated, where the configura-
tion shown in Fig. 17a is subjected to a lateral load and
moment at the top, the static and dynamic response of the
soil–foundation system is evaluated both by means of the
three-spring Winkler model and three-dimensional finite
elements, and the results are compared to illustrate the
applicability of the model for the analysis of large diameter
embedded foundations in multi-layered soil formations.
The foundation element investigated is embedded in a
three-layer linear elastic formation with Young’s moduli
equal to E1 ¼ 10MPa, E2 ¼ 30MPa, and E3 ¼ 50MPa
and density r1 ¼ 1500 kg/m3, r2 ¼ 1600 kg/m3, and r3 ¼
1800 kg/m3 for the top, middle, and bottom layers,
respectively. The Poisson’s ratio of all three layers is
common and is equal to n ¼ 0.3. The thickness of the top
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and middle layers is d1 ¼ 3m and d2 ¼ 4m correspond-
ingly, which overlie a linear elastic halfspace (layer 3). The
diameter of caisson is B ¼ 2m and the depth of embedment
is equal to D ¼ 8m.

A static lateral load of V ¼ 1000 kN and an overturning
moment of M ¼ 2000 kNm are initially applied at the top
of the caisson. Using the three-spring model developed
above, Eqs. (49) and (51) yield the following values for the
distributed translational and rotational springs along the
shaft of the foundation for within each of the three layers
(indicated by means of the subscript i=1, 2 or 3):

kxi ¼ 1:83
D

B

� ��0:15
Ei ) kx1 ¼ 14:9MPa

kx2 ¼ 44:6MPa; and kx3 ¼ 74:3MPa

kyi ¼ 1:11þ 0:23
D

B

� �� �
EiB

2 ) ky1 ¼ 81:2MPam2

ky2 ¼ 243:6MPam2; and ky3 ¼ 406MPam2

Also, the concentrated translational spring at the base of
the foundation is evaluated by means of Eq. (50) by
substituting the stiffness of the third soil layer as follows:

Kbx ¼ 0:67þ 0:13
D

B

� �� �
E3B ¼ 119MPam

Using the corresponding layer thickness of the three
formations in Eqs. (33)–(35), the following quantities are
estimated for the overall soil–foundation system as
interpreted from the ground surface:

Kxx ¼ kx1D1 þ kx2ðD2 �D1Þ þ kx3ðD3 �D2Þ þ Kbx

¼ 416:4MPa 	m
Kxr ¼ � kx1
D2

1

2
þ kx2

D2
2 �D2

1

2

� �
þ kx3

D2
3 �D2

2

2

� �
þ KbxD3

� �
¼ � 2468:3MPa 	m2

Krr ¼ kx1
D3

1

3
þ kx2

D3
2 �D3

1

3

� �
þ kx3

D3
3 �D3

2

3

� �
þ KbxD2

3 þ ky1D1 þ ky2ðD2 �D1Þ þ ky2ðD3 �D2Þ

¼ 18257:5MPa 	m3

where D1=d1=3m, D2=d1+d2=7m, and D3=d1+d2+
d3=8m. In matrix form, the displacement–force relation-
ship of the system is therefore expressed as follows, and
the resulting response expressed in terms of the top
displacement (ut) and rotation (y) of the foundation
element are:

ut

y

� �
¼

Kxx Kxr

Krx Krr

" #�1
V

M

� �
¼

1:53 cm

0:00218 rad

� �

Three-dimensional finite element simulations for the same
configuration and loading functions were next conducted,
and results were found to be in excellent agreement (with
10% accuracy) with the analytically estimated static
response, namely:

ut

y

� �
FEM

¼
1:78 cm

0:00239 rad

� �



ut

y

� �
three-spring

Winkler

¼
1:53 cm

0:00218 rad

� �
.

Successively, a dynamic sinusoidal load of amplitude
V=1000 kN and frequency f=5Hz was applied at the
top of the foundation. The shear wave velocity and
dimensionless frequency corresponding to the loading
frequency of the transverse excitation for each layer is
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estimated as follows:

V si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei

2ð1þ nÞri

s
) Vs1 ¼ 50m=s; V s2 ¼ 85m=s,

and Vs3 ¼ 103m=s;

a0i ¼
2pfB

Vsi

) a01 ¼ 1:25; a02 ¼ 0:74; and a03 ¼ 0:61.

Using Eqs. (52) and (53), the dynamic distributed transla-
tional and rotational springs and concentrated lateral
spring at the base are computed as follows:

kn

x1 ¼ 13:04þ 18:5i; kn

x2 ¼ 41:30þ 41:07i; and

kn

x3 ¼ 69:77þ 56:42i

Kn

bx ¼ 119:0þ 36:0i

kn

y1 ¼ 58:36� 25:2i; kn

y2 ¼ 203:04� 74:59i; and

kn

y3 ¼ 350:27� 102:48i

and the resulting global stiffness matrix as interpreted from
the top of the foundation is computed using the complex
formulation of Eqs. (33)–(35) as:

Kn

xx Kn

xr

Kn

rx Kn

rr

" #
¼

393:1þ 312:0i �2359:9� 1615:8i

�2359:9� 1615:8i 17351:3þ 9498:4i

" #

The dynamic displacement–load relation yields the follow-
ing results for the maximum displacement and rotation of
the caisson foundation, which are below compared to the
corresponding values estimated by means of finite element
dynamic simulations:

umax
t

ymax

" #
three-spring

Winkler

¼
1:12 cm

0:00162 rad

" #



umax
t

ymax

" #
FEM

¼
1:4 cm

0:00186 rad

" #

Fig. 17b and c shows the comparison between maximum
displacement and rotation values computed using the fitted
springs as described above, and the response evaluated
directly by means of 3D finite element simulations for a
frequency range of 1–10Hz. As can be readily seen, the
assumption of individually responding soil layers and
resulting approximation of independently responding
Winkler elements along the shaft of the model may be
employed with no significant loss of accuracy for the
analysis of large diameter embedded foundations in multi-
layered soil profiles, which represents one of the basic
assumptions of this study. In particular for the dynamic
case, despite the fact that the presence of multiple layers
causes reflections of waves at the interfaces arising from the
impedance contrast, the radiated waves are shown to
propagate for the most part parallel to the layer interfaces
(except for the base spring for which they are normal to the
interface). As a result, conditioned on the approximation
that the soil profile layers act almost as waveguides for the
energy emanating away from the pier, namely on a finite
impedance contrast between the layers of the idealized
profile, the anticipated reflections and their effect on the
total response is minimized, rendering the assumption of
this study valid.

8. Kinematic soil–structure interaction of large diameter

embedded foundations

The inability of a stiff foundation to comply with the
deformation field imposed by the soil response to seismic
incident waves and the resulting motion incompatibility
between the foundation response and the free-field is
translated into forces and moments applied on the
foundation. In turn, the rigidly responding foundation
causes filtering of the far-field motion, a phenomenon
that materializes for wavelengths comparable or shorter
than the dimensions of the foundation. This effect referred
to as kinematic interaction and schematically depicted
in Fig. 18 for the case of large diameter embedded
foundation investigated here, may be expressed in terms
of the following transfer functions that illustrate the
foundation response resulting from the imposed free field
motion (i.e., the soil column deformation in absence of the
foundation):

Huða0Þ ¼
ut

uff

(54)

Hyða0Þ ¼
yB

uff

(55)

In order to evaluate the analytical expressions for the
transfer functions describing the foundation response
subjected to seismic incident waves, consider a sinusoidal
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vertically propagating anti-plane shear wave (SH) incident
from the underlying halfspace. The solution of the far-field
displacement field in this case is given by:

uff ðzÞ ¼ uff cos 2p
z

l

	 

¼ uff cos a0

z

B

	 

(56)

where z is the depth from the surface, l is the wavelength of
the propagating sinusoid, and a0 is the corresponding
dimensionless frequency. For the configuration shown in
Fig. 15, equilibrium requirement of forces in the horizontal
direction results in the following expression:

un

t ððk
n

x �mo2ÞDþ Kn

bxÞ þ yn �ðkn

x �mo2Þ
D2

2
� K�bxD

� �

¼ un

ff kn

x

B

a0
sin a0

D

B

� �
þ Kn

bx cos a0
D

B

� �� �
(57)

Similarly, requiring moment equilibrium at the top of the
foundation results in the following expression:

un

t �ðk
n

x �mo2Þ
D2

2
� Kn

bxD

� �

þ yn ðkn

x �mo2Þ
D3

3
þ Kn

bxD2 þ kn

yDþ Kn

by

� �

¼ un

ff kn

x

B

a0

� �2

1� cos a0
D

B

� �� �
� a0

D

B
sin a0

D

B

� �� �"

� Kn

bxD cos a0
D

B

� �
� kn

y 1� cos a0
D

B

� �� �

�Kn

by
a0

B
sin a0

D

B

� ��
(58)

Eqs. (56) and (57) may be successively expressed in a
matrix form as follows:

Kn

xx

EB

Kn

xr

EB2

Kn

xr

EB2

Kn

rr

EB3

2
4

3
5 un

t

B

yn

" #
¼

Vn

eff

EB2

Mn

eff

EB3

2
4

3
5 (59)

where the effective force vector corresponds to the
following quantities:

Vn
eff

EB2
¼

un
ff

B

kn

x

E

1

a0
sin a0

D

B

� �
þ

kn

bx

EB
cos a0

D

B

� �� �
, (60)

Mn
eff

EB3
¼

un
ff

B

kn

x

E

1

a0

� �2

1� cos a0
D

B

� �� ��"

� a0
D

B
sin a0

D

B

� �
�

Kn
bx

EB

D

B
cos a0

D

B

� �
�

kn

y

EB2

� 1� cos a0
D

B

� �� �
�

Kn
by

EB3
a0 sin a0

D

B

� ��

By definition of the transfer functions given by Eqs. (54)
and (55), the following expression is derived for the
estimation of the foundation response upon the incidence
of a sinusoidal (monochromatic) wave resulting in free-field
response of amplitude uff:

Huða0Þ

Hyða0Þ

" #
¼

un
t

uff

����
����

ynB

uff

����
����

2
6664

3
7775 ¼

Kn

xx

EB

Kn

xr

EB2

Kn

xr

EB2

Kn

rr

EB3

2
6664

3
7775
�1 Vn

eff

EBun
ff

Mn
eff

EB2un
ff

2
66664

3
77775

����������

����������
(61)

Three-dimensional finite element numerical simulations
were here conducted to evaluate the target transfer
functions Hu and Hy for the case of vertically propagating
SH waves. For the numerical representation of the
problem, the far-field motion was applied in by means of
effective forcing functions in the interior of the truncated
computational domain, while the potentially scattered
wavefield was verified to be almost entirely absorbed by
the sponge boundaries as described in the foregoing
sections. A comparison with the values derived by means
of the analytical expression using both fitted and numeri-
cally derived (interpolated) spring constants is shown in
Fig. 19a and b for D/B ¼ 4.
Results obtained in this section illustrate that the

analytical solution for the kinematic response of rigid
intermediate embedded foundations obtained by means of
the three-spring model, allows the kinematic interaction
effects of pier foundation elements to be captured within an
acceptable degree of accuracy, considering the substantial
reduction in computational time. In particular, while the
3D finite element simulations do not capture quantitatively
the amplitude of the rocking response, the model does
predict the resonant and destructive interference frequen-
cies (i.e., the maxima and minima) of the corresponding
transfer function within acceptable range of accuracy. It
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should be also noted at this point that the values predicted
by three-spring Winkler model are for the most part
conservative, namely the predictions represent less pro-
nounced reduction in the translational motion and higher
induced rocking motions. Finally, the analytical transfer
functions obtained by means of the model described above
as well as the results of 3D finite element simulations are
shown to be in the bounded range predicted by means of
the shallow foundation theory (Ref. [4]) and the pile
kinematic response as formulated by Gazetas et al. [32];
this result implies that the proposed model is indeed an
improvement to the existing models employed for the
simulation of rigid deep foundations subjected to seismic
motion, and by means of a procedure that substantially
reduces the computational effort, the model can be used to
approximately predict the foundation response subjected to
transient seismic excitation given the aspect ratio of the
foundation D/B.

8.1. Transient foundation response to non-stationary seismic

incident motion

The analytical expressions developed above for the
displacement and rotation transfer functions from the
far-field deformation caused by vertically propagating SH
seismic waves to the rigid pier translation and rotation may
be implemented at minimal computational cost in a
computer script and used to estimate the motions
corresponding to any transient loading by means of
Fourier reconstruction of the response signal, provided
that the medium of propagation is linear elastic or
moderately nonlinear. Fig. 20a and b shows an example
of seismic displacement time history prescribed at the free-
field base for a caisson (B ¼ 2m, D ¼ 8m) embedded in
homogenous halfspace (Young’s modulus, E ¼ 1.0MPa,
Poisson’s ratio, n ¼ 0.3, and mass density, r ¼ 1500 kg/m3)
and the corresponding Fourier transform. For the numer-
ical simulations, the far-field (1D) response is initially
computed by means of a 1D soil column model, and the
resulting time histories are imposed at the corresponding
location of the numerical domain (i.e., at the soil–sponge
boundary interface) in the form of effective forces. Results
are compared in the ensuing to the corresponding ones
obtained by means of Fourier analysis using the transfer
functions described in Eqs. (60) and (61) and the dynamic
fitted springs developed in the foregoing sections.

In particular, comparison between the analytically
predicted and numerically evaluated response is depicted
in Fig. 21a and b. Note that the numerically obtained time
histories have been shifted in time to account for the wave
propagation duration of the excitation traveling from the
far-field to the pier. Results presented above readily
illustrate that that the model is able to capture the response
of pier within an acceptable degree of accuracy while
substantially reducing the computational time and numer-
ical modeling aspects of the problem that may strongly
affect the computed response such as the selection of
proper integration scheme and time-step, finite element
model discretization and effective absorbing boundary
conditions. Nonetheless, while the dominant frequency in
both translational and rocking motion response evaluated
by means of the analytical model is found to be in excellent
agreement with the numerical results, the maximum
translation predicted by the analytical model is 0.37m
(which is higher compared to the numerically obtained
value umax ¼ 0.23m), and the pier rotation is predicted to
be 0.34 rad by means of the analytical model (higher than
the corresponding value of 0.22 rad obtained by means of
the numerical simulations). It should be noted though that
while incompatibilities between analytical and numerical
results stem from the overprediction of the system stiffness
by means of the four mechanisms of resistance that do not
capture the complete physical problem, the approximate
model is expected to yield conservative results for the
predicted translations and rotations compared to 3D finite
element simulations and does provide a improved approx-
imation to the existing simplified models available for the
evaluation of kinematic response of intermediate rigid
embedded foundations.

9. Conclusions

We have described the development of an analytical
model for the prediction of the response of rigid cyli-
ndrical caisson foundations characterized by aspect ratios
D/B ¼ 2–6 and embedded in linear elastic soil media, using
a simple Winkler spring model with four springs. Results
illustrated in this paper show that for the range of aspect
ratio of interest (D/B ¼ 2–6), the effect of base rotational
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Fig. 21. Comparison of translation (top) and rotation (bottom) of caisson foundation when subjected to transient motion, evaluated via the analytical

three-spring model and the 3D finite element simulations in amplitude variation with time (left) and frequency content (right).

Varun et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 268–291290
spring is indeed negligible and therefore, a simplified three-
spring model may be used instead to capture the pier
response. Based on this approximation, expressions were
developed for the three springs as functions of aspect ratio
(D/B) and the dimensionless loading frequency since
sensitivity analyses showed that the effects of Poisson ratio
may be neglected in the evaluation of the aforementioned
springs. Results of the static response of a configuration
embedded in multi-layered soil obtained by means of the
proposed model were compared to 3D finite element
simulations, and the analytically evaluated response was
found to be in excellent agreement with the numerically
derived values at a considerably reduced computational
effort.

Analytical expressions were developed for the global
foundation stiffness matrix and for the transfer functions
of kinematic interaction effects, for the prediction of forced
vibration and seismic transient response correspondingly.
The theoretical values of free-field/pier response transfer
functions for translational and rocking motion resulting
from the seismic excitation were compared to the values
obtained by means of 3D finite element simulations, and
despite the fact that the proposed formulation does not
simulate the pier response exactly attributed to the complex
load transfer mechanisms applied at the soil–foundation
interface that cannot be captured by the simplified three-
spring proposed model—it may be applied to capture the
important response parameters, namely the frequency
content and evolution of time-history variation.

Finally, it should be noted that while the Winkler spring
functions presented above are applicable for linear elastic
medium with no material damping, the effect of material
damping can be accounted for by means of the elasticity–
visco-elasticity correspondence principle, namely the use of
complex soil moduli of the form E*

¼ E(1+2ix), where x is
the material damping ratio. Furthermore, while the
formulation presented in this paper is not capable of
capturing the separation between the soil and pier inter-
face, modified Winkler springs that include a stiffness
element, a damper and a contact element with Coulomb
friction and low tension resistance may be implemented to
account for the separation at the soil–foundation interface,
and the variability in soil strength subjected to compression
vs. extension. The approach may be even further extended
to capture the nonlinear soil behavior by implementing
nonlinear spring elements that represent the macroscopic
response of the material as a function of depth. It should be
noted also that in particular for the representation of
kinematic interaction, a first approximation to the non-
linear response of the soil–foundation system (provided
that the foundation material is responding within the linear
elastic range) could be obtained by means of equivalent
linear analyses in the far-field, successively to be used as
effective function at the base and soil–foundation interface
for the reduced stiffness and material damping evaluated at
convergence of the algorithm. Based on the developed
computational platform, analytical formulations may also
be developed for the motion-response transfer functions of
the pier subjected to horizontally propagating coherent SH
waves or for the response of intermediate rigid foundations
of various cross-sectional geometries.
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